文章

每日LeetCode 194-195

2021.8.14 ・ 共 301 字,您可能需要 1 分钟阅读

Tags: LeetCode

给定一棵树的前序遍历 preorder 与中序遍历 inorder。请构造二叉树并返回其根节点。

Input: preorder = [3,9,20,15,7], inorder = [9,3,15,20,7]
Output: [3,9,20,null,null,15,7]
class Solution {
    public TreeNode buildTree(int[] preorder, int[] inorder) {
        if (preorder.length == 0 || inorder.length == 0) {
            return null;
        }

        TreeNode root = new TreeNode(preorder[0]);
        for (int i = 0; i < inorder.length; i++) {
            if (inorder[i] == preorder[0]) {
                int[] preLeft = Arrays.copyOfRange(preorder, 1, i + 1);
                int[] preRight = Arrays.copyOfRange(preorder, i + 1, preorder.length);
                int[] inLeft = Arrays.copyOfRange(inorder, 0, i);
                int[] inRight = Arrays.copyOfRange(inorder, i + 1, inorder.length);
                root.left = buildTree(preLeft, inLeft);
                root.right = buildTree(preRight, inRight);
                break;
            }
        }
        return root;
    }
}

根据一棵树的中序遍历与后序遍历构造二叉树。

注意: 你可以假设树中没有重复的元素。

例如,给出

中序遍历 inorder = [9,3,15,20,7]
后序遍历 postorder = [9,15,7,20,3]

返回如下的二叉树:

    3
   / \
  9  20
    /  \
   15   7
class Solution {
    public TreeNode buildTree(int[] inorder, int[] postorder) {

        if (inorder.length == 0 || postorder.length == 0) {
            return null;
        }
        TreeNode root = new TreeNode(postorder[postorder.length - 1]);

        for (int i = 0; i < inorder.length; i++) {
            if (postorder[postorder.length - 1] == inorder[i]) {
                int[] inLeft = Arrays.copyOfRange(inorder, 0, i);
                int[] inRight = Arrays.copyOfRange(inorder, i + 1, inorder.length);
                int[] postLeft = Arrays.copyOfRange(postorder, 0, i);
                int[] postRight = Arrays.copyOfRange(postorder, i, inorder.length - 1);
                root.left = buildTree(inLeft, postLeft);
                root.right = buildTree(inRight, postRight);
                break;
            }
        }
        return root;
    }
}